摘 要:對于很多用戶來說,不僅希望買到質(zhì)量可靠、效率高、汽蝕性能好的產(chǎn)品,而且同時還希望價格便宜。然而,可靠性、效率和價格如同硬幣有了第三面一樣,不可能同時存在。文章將結合工程實踐經(jīng)驗及前人研究的成果,就可靠性與效率、壽命、臨界轉速及生命周期成本之間的關系進行探討,期望能對廣大用戶有所借鑒。
關鍵詞:離心泵;可靠性;效率;壽命;臨界轉速;生命周期成本
背 景
對于一些老的技術人員來說,這個題目是不是有一種似曾相識的感覺?沒錯!1980s年代,沈陽水泵研究所曾經(jīng)翻譯過美國Igor J. Karassik的一篇著作“可靠性 – 硬幣的第三面”。之所以采用了同樣的標題,一是因為其研究成果今天仍然具有一定的參考價值,另一方面也是對前輩表達一種敬意。
近些年來,隨著我國經(jīng)濟的發(fā)展,工業(yè)行業(yè)也得到了長足的發(fā)展,在生產(chǎn)企業(yè)中電機應用系統(tǒng)的數(shù)量不斷增加,電機系統(tǒng)用電量占到了工業(yè)用電量的60 % ~ 70 %,而泵的用電量又占電機系統(tǒng)用電總量的近三分之一。
我國是能源資源嚴重短缺的國家,隨著能源成本的不斷增加,設備能耗越來越成為人們關注的焦點。為了促進我國節(jié)約資源和保護環(huán)境的基本國策,以提高能源利用效率和改善生產(chǎn)環(huán)境質(zhì)量為目標,2016年國務院印發(fā)《“十三五”節(jié)能減排綜合工作方案》(以下簡稱《方案》),明確了“十三五”節(jié)能減排工作的主要目標和重點任務,對全國節(jié)能減排工作進行全面部署。并將電機系統(tǒng)能效提升納入重點節(jié)能工程。在強化重點用能設備節(jié)能管理內(nèi)容中特別提出:淘汰低效電機、變壓器、風機、水泵、壓縮機等用能設備,全面提升重點用能設備能效水平。
對于每個用戶來說,不僅想買到質(zhì)量可靠、效率高的產(chǎn)品,而且還希望價格便宜,這是人之常情,可以理解。然而,可靠性、效率和價格如同硬幣有了第三面一樣,不可能同時存在。
如果要選擇一個單獨的標準作為衡量一臺設備的相對優(yōu)秀程度,要求這臺設備在大修前能夠長期連續(xù)運行而不必停機拆卸檢修、更換某些零部件、花費時間和金錢,那么,最好的衡量尺度是可靠性。
文章就離心泵可靠性設計及應用中所涉及到的一些重要因素,如產(chǎn)品質(zhì)量、效率、壽命、臨界轉速、生命周期成本等與可靠性之間的關系進行探討,期望能對廣大用戶有所借鑒。
名詞及術語
臨界轉速
API 610第11版標準[1]對臨界轉速的定義為:轉子-軸承-支撐系統(tǒng)處于共振狀態(tài)時的軸轉速。
可靠性
在規(guī)定的條件下和規(guī)定的時間區(qū)間內(nèi),完成規(guī)定功能的能力,稱為產(chǎn)品的可靠性??煽啃允桥c時間相關的質(zhì)量指標,產(chǎn)品只能在一定的時間范圍內(nèi)達到可靠性目標值。
生命周期成本(LCC)
是指在產(chǎn)品有效使用期間(即全生命周期內(nèi))所發(fā)生的與該產(chǎn)品有關的所有成本,包括開發(fā)(計劃、設計和測試)、生產(chǎn)制造、產(chǎn)品營銷、物流、使用及維護、廢棄及處置等的成本。
關于可靠性的總的看法
可靠性對于很多人來說,都是一個比較模糊和難以確定的一個概念,即使是經(jīng)過專業(yè)訓練、素質(zhì)很高的產(chǎn)品設計和應用工程師也很難用幾句話來表達清楚。這就是為什么一個用戶在收到制造廠提供的幾種選擇(價格、效率和可靠性)中做出購買決定是多么的困難。
如果將價格和效率當作“硬幣”的兩個面來看待,那么工程師們必須學會考察硬幣的第三面 – 可靠性。用這個比喻,更進一步來說,硬幣的第三面,將告訴工程師們更為重要、更具有價值的一面[2]。
影響離心泵可靠性的因素
影響離心泵可靠性的因素很多,主要分為四大類:泵本體設計(執(zhí)行標準、水力設計和結構設計)、產(chǎn)品加工制造及裝配、配套件選型及設計和現(xiàn)場安裝應用。其中最主要的影響因素為:
1)壽命
2)效率
3)臨界轉速
4)生命周期成本
可靠性與質(zhì)量之間的關系
人們經(jīng)常將可靠性與產(chǎn)品質(zhì)量理解為同一概念。
定義
百度百科對產(chǎn)品質(zhì)量的定義:是指產(chǎn)品滿足規(guī)定需要和潛在需要的特征和特性的總和。任何產(chǎn)品都是為滿足用戶的使用需要而制造的。對于產(chǎn)品質(zhì)量來說,不論是簡單產(chǎn)品還是復雜產(chǎn)品,都應當用產(chǎn)品質(zhì)量特征或特性去描述。產(chǎn)品質(zhì)量特性依產(chǎn)品的特點而異,表現(xiàn)的參數(shù)和指標也多種多樣,反映用戶使用需要的質(zhì)量特性歸納起來一般有六個方面:即性能、壽命(耐用性)、可靠性與維修性、安全性、適用性和經(jīng)濟性。
而產(chǎn)品的可靠性定義包括下列四要素:
1)規(guī)定的時間;
2)規(guī)定的環(huán)境和使用條件;
3)規(guī)定的任務和功能;
4)具體的可靠性指標。
異同
從質(zhì)量的內(nèi)涵可知,質(zhì)量問題是產(chǎn)品某些或某項特性不滿足要求,由設計、制造和管理等綜合因素導致??煽啃詥栴}指的是產(chǎn)品在規(guī)定條件下不能實現(xiàn)既定功能,問題產(chǎn)生的原因為產(chǎn)品失效或故障。
可靠性問題是產(chǎn)品的功能失效,基于產(chǎn)品故障而產(chǎn)生。通過統(tǒng)計試驗可知,故障的產(chǎn)生期可劃分為3個階段,即早期故障階段、偶然故障階段和耗損故障階段。對于含有很多器件的產(chǎn)品,3個階段都會存在;有些產(chǎn)品則只含有部分階段,如軟件產(chǎn)品就沒有耗損階段。
可靠性與質(zhì)量的共同特點是,二者研究的問題是所有產(chǎn)品的共性。每種產(chǎn)品都要求滿足固有特性,同時也不能喪失規(guī)定的功能。
質(zhì)量問題是產(chǎn)品某些固有特性不能滿足要求,可靠性問題是指產(chǎn)品是否失效??煽啃员旧硎钱a(chǎn)品的固有特性,產(chǎn)品在規(guī)定的時間、條件下能夠實現(xiàn)既定功能,即為滿足要求;滿足要求則說明該產(chǎn)品具備所需能力,即產(chǎn)品質(zhì)量合格 - 此時不存在可靠性方面的質(zhì)量問題。當產(chǎn)品的可靠性不能滿足要求時,可靠性問題則被視為質(zhì)量問題。
相互關系
質(zhì)量問題和可靠性問題之間,在一定程度上存在著交叉關系。從時間段上看,可靠性問題與質(zhì)量問題常常出現(xiàn)在不同階段。研制生產(chǎn)中的產(chǎn)品如果存在問題(生產(chǎn)、制造、試驗中的不滿足要求),則多為質(zhì)量問題;但如果產(chǎn)品可靠性設計不合理,產(chǎn)品交付驗收時(如進行鑒定試驗)可能發(fā)生故障,不滿足設計要求。因此可知,質(zhì)量問題與可靠性問題二者相互影響。
提高產(chǎn)品可靠性的有效手段之一是采用高質(zhì)量等級的元器件,即運用質(zhì)量控制、質(zhì)量保證的方法提高可靠性。反之,很多試驗為確保成功而采用加強篩選的措施,即采用可靠性的方法保證質(zhì)量。由此也不難看出,可靠性與質(zhì)量相互補充[3]。
可靠性與使用壽命之間的關系
毫無疑問,設備的可靠性可以提高其運行壽命。另外,也可以根據(jù)用戶對設備使用壽命的要求(如API泵至少為20年,第三代核電站重要用泵至少為60年)來確定其可靠性。
從事石化泵工作的人們都知道:API泵最大的特點是高可靠性、長壽命、安裝維護方便。
API610標準所涉及的內(nèi)容基本來自于良好的工程驗證和操作實踐,API泵永遠將安全可靠性放在第一位,如:
最好具有穩(wěn)定的流量-揚程曲線,如果規(guī)定是并聯(lián)運行,則曲線上的揚程上升量至少應當是額定流量點揚程的10%;
對于單級揚程超過200米和單級功率超過225kW的高能泵,要求葉輪葉片與蝸殼或導葉之間必須具有足夠的間隙,以減小葉輪葉片通過頻率振動和小流量時的低頻振動;
壓力泵殼在最壞組合情況下,要求做到運轉無泄漏或旋轉部件與靜止部件之間無接觸,并經(jīng)得住水壓試驗,同時還得預留至少3mm的腐蝕余量;
軸的全長進行機械加工并進行拋光,使總跳動不大于25 μm,同時軸的剛度應當限定在主要密封面處軸的總撓度小于50μm;
葉輪、平衡鼓及類似的主要轉運部件應當進行到ISO1940-1 G2.5級的動平衡;動/靜零部件應當具有至少50的布氏硬度差,除非靜止和旋轉的耐磨表面都具有至少400的布氏硬度;
為了保證任何工況下動/靜部件均不易發(fā)生咬合,加大口環(huán)間隙;API泵應配置API682標準中規(guī)定的集裝式機械密封;
如果能量強度(即泵額定功率kW和額定轉速r/min的乘積)為4百萬或更大,則必須使用流體動壓徑向軸承和推力軸承等等。
可靠性越高,使用壽命越長。
可靠性與效率之間的關系
可靠性與效率是一對緊密相關而又相互矛盾的技術經(jīng)濟指標。有人曾對不同效率的兩種超臨界600MW機組50%容量的給水泵作過效率與可靠性的研究,得出如圖1的曲線[4]。
除了水力設計以外,影響離心泵效率的最主要因素是內(nèi)部泄漏,如耐磨環(huán)間隙的大小。
如果我們正在研制一臺多級離心泵,那么我們可以通過選擇較高的比轉速設計來提高泵的效率。為此就需要較低單級揚程,增加葉輪級數(shù),采用較長的軸跨距,這樣在運轉時又會使軸產(chǎn)生較大的撓度 – 除非我們選擇相反的辦法和采用較大的間隙,但又降低了泵的可靠性。
在實際工程應用中,這種案例很多。
API泵以高可靠性而著稱,然而,API泵高可靠性是以犧牲部分效率為代價的,具體體現(xiàn)在:
1)對于如OH2和OH3型泵,API610第11版標準要求采用剛性軸設計,特別增加了附錄K.1并給出了軸剛性的判定原則。同時,為了提高可靠性,該標準還提出了軸承系統(tǒng)壽命的概念。
2)另外,為了提高可靠性,API610標準允許加大耐磨環(huán)間隙。這一點在API泵的工程實踐中已得到普遍采用。
這些提高可靠性的辦法,無疑會降低泵的效率。
某電廠2x350 MW機組50%容量的汽動給水泵,參數(shù)為Q=667 m3/h,H=2300 m,n=5400 rpm,η=85.3 %(熱態(tài))。該泵的效率指標是高水平的,完全反映了高效率設計的特點。
在運行一年多的時間內(nèi)兩臺350 MW機組各有一臺汽動給水泵先后發(fā)生重大事故。泵的推力軸承燒毀,平衡機構和葉輪耐磨環(huán)磨損或咬死引起軸彎曲。上海水泵廠從提高可靠性出發(fā)為該泵修改了轉子的局部設計、更換了軸材,提供了兩根泵軸和修改設計中需要的零件,精心做了轉動部件的動平衡并派員到現(xiàn)場指導組裝。
泵修復后,兩臺泵的振動水平均小于0.02 mm,比原裝進口泵減少了一半。效率和可靠性之間的關系在這個實例中得到了充分的說明[4]。
可靠性越高,泵的效率越低。
臨界轉速與可靠性之間的關系
在臨界轉速下,轉子對于不平衡比任何其它轉速時更敏感。與其它類型的旋轉設備相比,泵轉子動力學涉及到更多的設計變量,了解臨界轉速的目的在于讓離心泵的工作轉速避開臨界轉速,從而避免引起共振。
泵的臨界轉速取決于軸的橫向剛度系數(shù)和圓盤的質(zhì)量,而與偏心距無關。更具體的說,臨界轉速的大小與軸的材料、結構、粗細、葉輪質(zhì)量及位置、耐磨環(huán)的間隙及表面型式、軸的支承方式等因素有關。臨界轉速還與軸所受到的軸向力的大小和方向有關,當軸向力為拉力時,臨界轉速提高,而當軸向力為壓力時,臨界轉速則降低。
由于轉子在各種振型下有一系列固有頻率,因而也有相應的一系列臨界轉速,由低及高依次稱為一階臨界轉速、二階臨界轉速……等等。不過,通常只有一階臨界轉速和二階臨界臨界轉速與離心泵的實際應用相關。離心泵的額定工作轉速或者低于轉子的一階臨界轉速,或者介于一階臨界轉速與二階臨界轉速之間。在傳統(tǒng)意義上,將前者稱作剛性軸,后者稱作柔性軸。
由于材料及熱處理工藝等基礎性研究一直是我國的一個短板,嚴重制約了制造業(yè)的發(fā)展。因此,實際工程應用中,對于那些可靠性要求高的重要場合、關鍵用泵,均要求采用剛性軸。
然而,即使采用了剛性軸,在實際工程招標過程中,工程公司/設計院/用戶還是不太放心 - 為了防止泵運轉過程中發(fā)生共振,希望一階臨界轉速與泵額定轉速差距越大越好(如早期核電站招標文件中要求“泵組軸系在水中的第一臨界轉速應高于其額定工況點對應轉速的125%”,后來要求高于其額定工況點對應轉速的135%、甚至要求達到150%),從技術上來說是沒有問題的。
但是,卻忽略了臨界轉速對離心泵性能的影響(與泵的能效要求相矛盾)。在同等條件下,臨界轉速越高,軸系越粗,意味著泵的效率越低。為此,應根據(jù)不同的泵型及不同的使用工況,合理確定臨界轉速與泵的額定轉速之間的比值。
如果既要滿足第一臨界轉速高于其額定工況點對應轉速的150%,又要滿足能效標準要求,最有效的辦法是動/靜零部件之間設計成具有極小的間隙,以便降低泵的內(nèi)部泄漏。但是這種強制結構對于提高泵的可靠性是極為不利的方法。
在同等條件下,臨界轉速越高,泵的可靠性越高,而效率卻越低。
可靠性與產(chǎn)品生命周期成本之間的關系
大概從上世紀80年代開始,很多發(fā)達國家在設備采購和工程招標中便開始引用產(chǎn)品“生命周期成本”的概念,并作為一項必不可少的評標內(nèi)容。
LCC是指產(chǎn)品整個“生命周期”內(nèi)的所有成本,將產(chǎn)品壽命與其性能、可靠性、可生產(chǎn)性、可維護性以及質(zhì)量和成本等綜合考慮。
LCC管理源起于美國軍方,最初主要用于軍事物資的研發(fā)和采購,適用于產(chǎn)品使用周期長、材料損耗量大、維護費用高的產(chǎn)品領域。1999年6月,美國總統(tǒng)克林頓簽署政府命令,各州所需的裝備和工程項目,要求必須有LCC報告,沒有LCC估算、評價,一律不準簽約。
LCC自上個世紀 80 年代初期引入我國。當時,我國的 LCC 工作由海軍起頭,空軍、二炮都積極推廣運用,并于1993 年、1998 年分別頒布實施了國軍標“裝備費用 - 效能分析”,軍隊使用標準“武器裝備壽命周期費用估算”,在軍事裝備的論證與審核中,將把 LCC作為一項必不可少的內(nèi)容。
2001年1月HI(美國水力協(xié)會)、Europump(歐洲泵業(yè)組織)、OIT(美國能源部工業(yè)技術辦公室)聯(lián)合出版了“Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems”,以指南的方式將LCC推薦到泵行業(yè)。指南中詳細列出了LCC費用的組成和說明,并提供了部分費用的計算方法。對于高利用率、長壽命的泵,其最初的購買價格僅占LCC的一小部分。圖2給出了一臺中型工業(yè)泵典型的生命周期成本的大概構成。
圖2 - 一臺中型工業(yè)泵典型的LCC圖
API 610標準適用范圍中明確:相關行業(yè)的運行經(jīng)驗表明,當超過以下任何一種條件時,按本國際標準生產(chǎn)的泵,生命周期成本最低:出口表壓19 bar,入口表壓5 bar;泵送溫度150 ℃;轉速3600 r/min;額定揚程120 m;懸臂泵葉輪直徑330 mm。
對于高利用率、長壽命的離心泵(如API泵、火電廠及核電站重要用泵)來說,可靠性越高, LCC越低。
總結
質(zhì)量與可靠性二者相互影響,相互補充。
如果將價格和效率當作硬幣的兩個面來看待,那么可靠性可以看作硬幣的第三面。
可靠性越高,泵使用壽命越長。
可靠性越高,泵的效率越低。
臨界轉速越高,泵的可靠性越高,而效率卻越低。
對于高利用率、長壽命的離心泵來說,可靠性越高, LCC越低。
參考文獻
[1] ANSI/API STANDAED 610 'Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries', ELEVENTH EDITION, SEPTEMBER 2010; ISO 13709: 2009 (Identical)
[2] Igor J. Karassik,可靠性 – 硬幣的第三面,《泵的故障預測和可靠性譯文集》,沈陽水泵研究所/機械工業(yè)水泵科技情報網(wǎng)
[3] 億博檢測認證,淺談可靠性與質(zhì)量的關系,sohu.com,2019-08-13
[4] 黃經(jīng)國,大型鍋爐給水泵的可靠性設計,水泵技術,1992.1,32-37